As an in-depth guide to understanding wind effects on cable-supported bridges, this book uses analytical, numerical and experimental methods to give readers a fundamental and practical understanding of the subject matter. It is structured to systemically move from introductory areas through to advanced topics currently being developed from research work. The author concludes with the application of the theory covered to real-world examples, enabling readers to apply their knowledge.

The author provides background material, covering areas such as wind climate, cable-supported bridges, wind-induced damage, and the history of bridge wind engineering. Wind characteristics in atmospheric boundary layer, mean wind load and aerostatic instability, wind-induced vibration and aerodynamic instability, and wind tunnel testing are then described as the fundamentals of the subject. State-of-the-art contributions include rain-wind-induced cable vibration, wind-vehicle-bridge interaction, wind-induced vibration control, wind and structural health monitoring, fatigue analysis, reliability analysis, typhoon wind simulation, non-stationary and nonlinear buffeting response. Lastly, the theory is applied to the actual long-span cable-supported bridges.

Structured in an easy-to-follow way, covering the topic from the fundamentals right through to the state-of-the-art
Describes advanced topics such as wind and structural health monitoring and non-stationary and nonlinear buffeting response
Gives a comprehensive description of various methods including CFD simulations of bridge and vehicle loading
Uses two projects with which the author has worked extensively, Stonecutters cable-stayed bridge and Tsing Ma suspension bridge, as worked examples, giving readers a practical understanding

Table of Contents
1 Wind Storms and Cable-Supported Bridges 1
2 Wind Characteristics in Atmospheric Boundary Layer 25
3 Mean Wind Load and Aerostatic Instability 61
4 Wind-Induced Vibration and Aerodynamic Instability 83
5 Wind-Induced Vibration of Stay Cables 131
6 Wind-Vehicle-Bridge Interaction 177
7 Wind Tunnel Studies 241
8 Computational Wind Engineering 289
9 Wind and Structural Health Monitoring 345
10 Buffeting Response to Skew Winds 385
11 Multiple Loading-Induced Fatigue Analysis 439
12 Wind-Induced Vibration Control 509
13 Typhoon Wind Field Simulation 569
14 Reliability Analysis of Wind-Excited Bridges 615
15 Non-Stationary and Non-Linear Buffeting Response 661
16 Epilogue: Challenges and Prospects 729

About the Author
You-Lin Xu: You-Lin Xu, The Hong Kong Polytechnic University, China Prof. Y L Xu obtained his Doctorate from The University of Sydney,
Australia, in 1991. Having worked at James Cook University, Australia, as a research fellow from 1991-95, he joined The Hong Kong Polytechnic University in 1995. He was promoted to Professor in 1999 and to Chair Professor in 2003. Prof. Xu has been the founding Director of Research Centre for Urban Hazards Mitigation of the University since 2002, and was appointed as Head of the Department of Civil and Structural Engineering of the University in 2007. Prof. Xu has conducted research and consultancy work in the field of wind engineering and bridge engineering for almost 30 years. He has worked extensively on wind loading and effect on the Tsing Ma suspension bridge in Hong Kong since 1995. Prof. Xu has also been heavily involved in wind studies of the Stonecutters Bridge in Hong Kong. At The Hong Kong Polytechnic University, Prof. Xu has taught the subject "Wind Engineering" to MSc students since 1998. He has edited 5 books, published over 160 refereed international journal papers, and presented over 200 conference papers. Prof. Xu is a Fellow Member of the Hong Kong Institution of Engineers (HKIE) and a Fellow Member of the American Society of Civil Engineer (ASCE).