About the Book

Electrical machines form an integral part of a large electrical power system, with other components as well. The aim of this book is to give detailed theory of the experiments on the electrical machines. This laboratory manual on electrical machines is meant for electrical engineering students of B.E. and B. Tech. and polytechnics in India and abroad. This book gives the basic information to the students with the machine phenomenon, working principles and testing methods, etc. It also imparts a real physical understanding of various types of electrical machines. 

The main attraction of this laboratory manual is its power point presentation for all experiments. With the help of this any college or institute can conduct these experiments using available machines with little modifications. By studying this PPT, an average student can also perform the experiments with great interest and enthusiasm.

The conclusion written at the end of each experiment will help the student as well as working engineers, to know the behaviour of various machines. This book will be a valuable asset to the practicing engineers, teachers and students.

Salient Features

1. Experiments for second year of B.E. or B.Tech.
2. Experiments for third year of B.E. or B.Tech.
3. Experiments for second and third year of polytechnics.

Table of Contents

Experiment
1. To Study the Speed Control of a DC Shunt Motor by (a) varying armature voltage with field current kept constant. (b) varying field current with armature voltage kept constant. Experiment
2. To Perform Load Test on a DC Shunt Generator. Experiment
3. To Perform Open Circuit and Short Circuit Test on a Single-Phase Transformer Experiment
4. To Study (a) the Polarity Markings on Single-Phase Transformer Windings and (b) the Operation of an Autotransformer. Experiment
5. To Study the Load Test on a Cumulatively Compounded DC Motor. Experiment
6. To Study the Load Test on a Three-Phase Induction Motor. Experiment
7. To Determine Voltage Regulation and Efficiency of a Single-Phase Transformer by Direct Loading. Experiment
8. To Study the Scott-Connection of Transformers (Three-Phase to Two-Phase Conversion). Experiment
9. To Study the Variation of Speed and Load Test on Schrage Motor. Experiment
10. To Plot V and Inverted V(Λ) Curves of a Synchronous Motor Experiment
11. To Determine the Ratio Xq/Xd for Three-Phase Alternator by using “Slip Test”. Experiment
12. To Study the Synchronization of an Alternator with an Infinite Bus by “Dark Lamp Method”. Experiment
13. To Determine Potier Reactance of Three-Phase Alternator by “Zero Power Factor Lagging Saturation Curve”. Experiment
14. To Determine Negative Sequence and Zero Sequence Reactances of Synchronous Generator. Experiment
15. To Study the Characteristics of Three-Phase Induction Generator. Experiment
16. To Determine Direct Axis Subtransient (Xd”), Quadrature Axis Subtransient (Xq”) Reactances of Synchronous Machine.

About the Author

D.P. Kothari :- D.P. Kothari is Director Research, Gaikwad Patil Group of Institution, Nagpur. He obtained his BE (Electrical) in 1967, ME (Power Systems) in 1969 and Ph.D. in 1975 from BITS, Pilani, Rajasthan. From 1969 to 1977, he was involved in teaching and development of several
Dr. Kothari served as Vice Chancellor, VIT, Vellore, Director in-charge and Deputy Director (Administration) as well as Head in the Centre of Energy Studies at Indian Institute of Technology, Delhi and as Principal, VRCE, Nagpur. He was visiting professor at the Royal Melbourne Institute of Technology, Melbourne, Australia, during 1982-83 and 1989, for two years. He was also NSF Fellow at Perdue University, USA in 1992. Dr. Kothari, who is a recipient of the most Active Researcher Award, has published and presented 780 research papers in various national as well as international journals, conferences, guided 42 Ph.D scholars and 65 M. Tech students, and authored 42 books in various allied areas. He is the recipient of several prestigious awards during his tenure.

B.S. Umre: B. S. Umre is Associate Professor in Electrical Engineering in the Department of Electrical Engineering at Visvesvaraya National Institute of Technology, Nagpur. He obtained his BE, M. Tech and Ph. D. degree from Nagpur University, Nagpur. He has 28 years of teaching experience in VNIT, Nagpur. His area of interest is in Electrical Machines, Power Systems, Modeling and Simulation, Torsional Oscillation. He has published

- presented 20 research papers in various reputed journals and conferences, guided 20 M. Tech. theses. He is a life member of ISTE and IE (India). He is a member of Board of Studies, Nagpur University for the session 2011-15.