
2.1 INTRODUCTION
The motion of particles which can be observed directly or through microscope can 
be explained by classical mechanics. But when the phenomena like photoelectric 
effect, X-rays, ultraviolet catastrophe, superconductivity were discovered, clas-
sical physics failed to explain such phenomena. The microworld of atoms obeys 
different laws. The new laws applicable for microparticles constitute quantum 
mechanics. The revision of classical concepts began with the seminal hypothesis 
of Planck and many distinguished physicists such as Einstein, Bohr, de Broglie, 
Schrödinger, Born, Pauli, Heisenberg, Dirac and others contributed to the develop-
ment of quantum mechanics.

Quantum Mechanics is a branch of physics dealing with the behaviour of mat-
ter and energy on the microscope scale of atoms and subatomic particles. Quantum 
mechanics is fundamental to our understanding of all the fundamental forces of 
nature except gravity.

It provides the foundation to several branches of physics, including Electromag-
netism, Particle Physics, Condensed Matter Physics, and some parts of Cosmology. 
Quantum Mechanics is essential to understand the theory of chemical bonding (and 
hence, the entire subject of chemistry), structural biology, and technologies such as 
electronics, information technology (IT), and nanotechnology. Hundreds of experi-
ments and commendable work in applied sciences have proved quantum mechanics 
a successful and practical science.

2.2 WAVE AND PARTICLE DUALITY OF RADIATION
The concept of a particle is easy to grasp. It has mass, it is located at some definite 
point, it can move from one place to another, it gives energy when slowed down 
or stopped. Thus, the particle is specified by: (i) mass, m; (ii) velocity, v; (iii) mo-
mentum, p; and (iv) energy, E.

The concept of a wave is a bit more difficult than that of a particle. A wave is 
spread out over a relatively large region of space, it cannot be said to be located just 
here and there, it is hard to think of mass being associated with a wave. Actually, 
a wave is nothing but a spread out disturbance. A wave is specified by its: (i) fre-
quency, (ii) wavelength, (iii) phase or wave velocity, (iv) amplitude, and (v) intensity.
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waves. His suggestion was based on the fact: if radiation like light can act like 
wave sometime and like a particle at other times, then the material particles (e.g., 
electron, neutron, etc.) should also act as wave at some other times. According to de 
Broglie’s hypothesis, a moving particle is associated with a wave which is known 
as de Broglie wave. The wavelength of the matter wave is given by

 l = h
mv

h
p

=

where m is the mass of the material particle, v its velocity and p is its momentum.

A particle A wave

Fig. 2.1 Diagrammatic representation of a particle and a wave. A particle is localized 
at a point in space whereas a wave spreads over a large volume.

de Broglie wavelength. The expression of the wavelength associated with a mate-
rial particle can be derived on the analogy of radiation as follows:

Considering the Planck’s theory of radiation, the energy of a photon (quantum ) 
is given by
 E = h g = h c

l
 ... (1)

where c is the velocity of light in vacuum and l is its wavelength.
According to Einstein energy mass relation

 E = mc2 ... (2)
From equations (1) and (2), we get

 mc2 = h c
l

 or l  = h c
mc2  or l = h

mc
 ... (3)

where mc = p (momentum associated with photon).
If we consider the case of a material particle of mass m and moving with a 

velocity v, i.e., momentum mv, then the wavelength associated with this particle 
is given by
 l = h

mv
h
p

=  ... (4)

If E is the kinetic energy of the material particle, then

 E = 1
2

1
2 2

2
2 2 2

mv m v
m

p
m

= =

or p = 2mE

\ de Broglie wavelength

 l = h
m E2

 ... (5)
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de Broglie’s wavelength associated with electrons. Let us consider the case of an 
electron at rest mass m, and charge e which is accelerated by a potential V volts 
from rest to velocity v, then

 1
2

m0v
2 = eV  or  v = 2

0

eV
m

 l = h
m v

h m
m eV

h
eV m0

0

0 02 2
= =

or l = 6 625 10
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.

. .

¥

¥ ¥ ¥ ¥( )
-

- -V

  = 12 26.
V

 Å
If V = 100 volts, then

 l  = 1.226 Å. ... (6)
Equation (6) shows that the wavelength associated with an electron accelerated 

to 100 volts is 1.226 Å.

Wave Velocity of de Broglie Wave
The wave velocity u is given by the following expression:
 u = g l
where g is the frequency of matter waves. According to Planck’s theory,
 E = hg
and from Einstein’s relation,
 E = mc2

\ hg = mc2 or g = mc
h

2
 …(1)

For matter waves,  l = h
mv

 …(2)

Substituting these values, we get

 u = mc
h

h
mv

c
v

2 2
¥ =  …(3)

where v is the speed of material particle which is less than the speed of light c.
The wave velocity can also be expressed in terms of wavelength, we know that

 g = E
h

 = 

1
2 1

2

2
2

mv

h
eV
h

mv eV= =È
ÎÍ

˘
˚̇

∵  … (4)
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Multiplying and dividing the right-hand side of equation (4) by h/2 m, we have

 g h
m

meV
h

h
m2

2
2

1
2 2¥ = ¥

l
 where l = h

meV2

\ u = g l = h
m

h
m2

1
22¥ ¥ =

l
l

l
 ... (5)

Equations (3) and (5) are the different forms of the wave velocity of de Broglie wave.

2.4  EXPERIMENTAL VERIFICATION OF DE BROGLIE’S 
THEORY OF MATTER WAVES: DIFFRACTION OF 
MATERIAL PARTICLES

(i) Davisson and Germer Experiment on Electron Diffraction
If a material particle has a wave character, it is expected to show phenomena like 
interference and diffraction. In 1927, Davisson and Germer demonstrated that a 
beam of electrons does suffer diffraction. Their apparatus is shown in Fig. 2.2. 
Electrons from a heated filament are accelerated through a variable potential V and 
emerge from the ‘electron gun’ G. This electron beam falls normally on a nickel 
crystal C. The electrons are diffracted from the crystal in all directions. The intensity 
of the diffracted beam in different directions is measured by a Faraday cylinder F
(connected to a galvanometer), which can be moved along a circular scale S. The 
crystal can be turned about an axis parallel to the incident beam. Thus, any azimuth 
of the crystal can be presented to the plane defined by the incident beam and the 
beam entering the Faraday cylinder.

First of all, the accelerating potential V is given a low value, and the crystal is 
turned at any arbitrary azimuth. The Faraday cylinder is moved to various positions 

g

Fig. 2.2 Davisson Germer experiment setup.
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on the scale S and the galvanometer current at each position is noted. The current, 
which is a measure of the intensity of the diffracted beam, is plotted against the angle 
φ between the incident beam, and the beam entering the cylinder. The observations 
are repeated for different accelerating potentials and the corresponding curves are 
drawn as shown in Fig. 2.3.

f

44 volts 48 volts 54 volts 60 volts

f = 50°

Fig. 2.3 Variation of intensity with angle f
It is seen that a ‘bump’ begins to appear in the curve for 44-volt electrons. With 

increasing potential, the bump moves upwards and becomes most prominent in 
the curve for 54 volt electrons at φ = 50°. At higher potentials the bump gradually 
disappears.

The bump in its most prominent state verifies the existence of electron waves. 
For, according to de Broglie, the wavelength associated with an electron acceler-
ated through V volts is

 l = 12 26.
V

 Å,

Hence, the wavelength associated with a 54-volt electron is 

 l = 12 26.
(54)

 = 1.67 Å.

Now, it is known from X-ray analysis that the nickel crystal acts as a plane 
diffraction grating with grating space = d = 0.91 Å (Fig. 2.4). According to experi-
ment, we have a diffracted electron beam at φ = 50°. This arises from wave-like 
diffraction from the family of Bragg atomic planes. The corresponding angle of 

incidence relative to the family of Bragg planes is θ = 65° = ∞ - ∞Ê
ËÁ

ˆ
¯̃

180 50
2

. Hence, 

using the Bragg’s equation (taking the order n = 1), we get
 l = 2 d sin q
 = 2 (0.91 Å) sin 65° = 1.65 Å.

This being in excellent agreement with the wavelength computed from de Bro-
glie hypothesis, shows that electrons are wave-like in some circumstances. Other 
fundamental particles like neutrons also show wave-like properties. The Davisson-
Germer experiment thus provides direct verification of de Broglie hypothesis of the 
wave nature of moving particles.
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The diffraction patterns produced by electron beams were strikingly similar to 
the X-ray diffraction patterns obtained from powder samples. Thus, the experi-
ment of G.P. Thomson and Kikuchi provided irrefutable proof to the existence of 
de Broglie waves.

2.5 PROPERTIES OF MATTER WAVES

Following are the properties of matter waves:
 (1) Lighter is the particle, greater is the wavelength associated with it.
 (2) Smaller is the velocity of the  particle, greater is the wavelength associated 

with it.
 (3) When v = 0 then l = •, i.e., wave becomes indeterminate and if v = • then 

l = 0. This shows that matter waves are generated by the motion of particles. 
These waves are produced whether the particles are charged particles or they 

are uncharged (l = h
mv

 is independent of charge). This fact reveals that 

these waves are not electromagnetic waves but they are a new kind of waves 
(electromagnetic waves are produced only by motion of charged particles).

 (4) The velocity of matter waves depends on the velocity of material particle, i.e., 
it is not a constant while the velocity of electromagnetic wave is constant.

 (5) The velocity of matter waves is greater than the velocity of light. This can 
be proved as under:

   We know that E = hg and and E = mc2

  \  hg = mc2  or  v = mc
h

2

   The wave velocity (vp) is given by

 vp = g ¥ l  = mc
h

h
mv

2
¥   \ l = h

mv

 vp = c
v

2

As particle velocity v cannot exceed c (velocity of light), hence vp is greater than 
the velocity of light.
 (6) The wave and particle aspects of moving bodies can never appear together in 

the same experiment. When we can say is that waves have particle-like proper-
ties and particles have wave-like properties and the concepts are inseparably 
linked. Matter wave representation is only a symbolic representation.

 (7) The wave nature of matter introduces an uncertainty in the location of the 
position of the particle because a wave cannot be said exactly at this point 
or exactly at that point. However, where the wave is large (strong), there is 
a good chance of finding the particle while, where the wave is small (weak) 
there is less chance of finding the particle.
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Wavelength of Macroscopic Bodies
For an electron having an energy 100 eV, the de Brogile wavelength is 1.33 Å which 
is more than the size of the electron. Whereas the wavelength of macroscopic bodies 
is insignificant in comparison to the size of the bodies themselves even at very low 
velocities, e.g., if we consider a cricket ball of mass 500 gm flying with velocity 
20 km/hr, its wavelength comes to

   l = ¥
¥

-6 62 10
0 5

34.
.

Js
kg 13.9 m/s

 = .95 ¥ 10–34 = 10–34 m = 10–24 Å

which is insignificant in comparison to the size of the ball.

2.6  WAVE PACKET, PHASE VELOCITY AND GROUP 
VELOCITY

Wave velocity is also called phase velocity. Wave motion is a form of disturbance 
which travels through a medium due to repeated periodic motion of the particles 
of the medium about their mean positions, the motion being handed over from one 
particle to the next. The individual oscillators which make up the medium only 
execute simple harmonic motion about their mean positions and do not themselves 
travel through the medium with the wave. Every particle begins its vibration a little 
later than its predecessor and there is a progressive change of phase as we travel 
from one particle to the next. It is the phase relationship of these particles that we 
observe as a wave and the velocity with which the plane of equal phase travels 
through the medium is known as phase velocity or wave velocity.

Let us assume that a particle like an electron can be described mathematically 
by a sine wave y = A sin (wt – kx).

This wave has no beginning and no end. It is of infinite extent and completely 
nonlocalised. But particle (electron) is confined to a very small volume. Therefore, 
a monofrequency wave cannot represent a particle. It implies that the de Broglie 
waves are not harmonic waves but could be a combination of several waves. A 
superposition of several waves of slightly different frequencies gives rise to a wave 
packet. Such a wave packet possesses both wave and particle properties. The regular 
separation between successive maxima in a wave packet is the characteristic of a 
wave and at the same time it has a particle-like localization in space.

A wave packet can be described in terms of a superposition of individual har-
monic waves of slightly different frequencies centred on a frequency, v0. Let a 
superposition of two waves be
  y1 = A sin (k1x – w1t)
  y2 = A sin (k2x – w2t)
\   y = y1 + y2
   = A sin (k1x – w1t) + A sin (k2x – w2t)

 = 2A sin 1
2

1
21 2( ) ( )k k x t+ - +È

ÎÍ
˘
˚̇

w w1 2   cos 1
2

1
21 2( ) ( )k k x t+ - +È

ÎÍ
˘
˚̇

w w1 2
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the group and phase velocities are the same, i.e., in case of electromagnetic waves 
in vacuum.

Relation between Particle Velocity and Group Velocity
Consider a particle of rest mass m0 and moving with velocity v. Let w be the angular 
frequency and k be the wave number of de Broglie waves associated with a particle.

 w = 2pg = 2p mc
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As v < c, the phase velocity of the associated wave is always greater than c, 
the velocity of light.
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Thus, the de Broglie wave group travels with the same velocity as that of 

the particle.
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2.7 WAVE FUNCTION

Waves represent the propagation of a disturbance in a medium. Light waves are 
represented by electromagnetic field variations and sound waves are represented 
by pressure variations. The de Broglie wave associated with a moving particle 
cannot be specified in a similar manner, since electrons have wave properties, it 
may be assumed that a quantity y represents a de Broglie wave just as the electric 
vector represents a light wave. The quantity y is called the wave function. y (x, y, 
z, t) is function of space and time coordinates and it represents position of particle 
at some time t. However, it is not possible to locate a particle precisely at position 
x, y, z, there is only a probability of the particle being at the specific point (x, y, z). 
y  is usually a complex quantity.

2.8  PHYSICAL INTERPRETATION OF WAVE FUNCTION

The first and the simple interpretation of y was given by Schrödinger himself in 
terms of charge density. We know that in any electromagnetic wave system if A is 
the amplitude of the wave, then the energy density, i.e., energy per unit volume is 
equal to A2, so that the number of photons per  unit volume, i.e., photon density is 
equal to A2/hg or the photon density is proportional to A2 as hg is constant. If y is 
the amplitude of matter waves at any point in space, then the particle density at that 
point may be taken as proportional to y2. Thus, y2 is a measure of particle density. 
When this is multiplied by the charge of the particle, the charge density is obtained. 
In this way, y2 is a measure of charge density. It is observed that in some cases, y is 
appreciably different from zero within some finite region known as wave packet. It is 
natural to ask, “where is the particle in relation to wave packet?” To explain it, Max 
Born suggested a new idea about the physical significance of y which is generally 
accepted nowadays. According to Max Born yy* = |y|2 gives the probability of 
finding the particle in the state y, i.e., y2 is a measure of probability density. 
The probability of finding a particle in volume dt = dx dy dz is given by |y|2 dx dy 
dz. For the total probability of finding the particle somewhere is, of course, unit, 
i.e., the particle is certainly to be found somewhere in space.

  | |y 2 1dx dy dz =ÚÚÚ
y satisfying above requirement is said to be normalized.

Normalization Condition
If at all the particle exists, the particle is certainly somewhere in the universe there- 
fore, the probability of finding the particle somewhere in the universe must be unity. 
Since the probability of its being located in an elemental volume is proportional to 
|y|2 dx dy dz, it is convenient to choose the constant of proportionality such that the 
sum of the probabilities over all values of x, y, z must be unity. Thus,
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-•

•

ÚÚÚ =yy* dx dy dz 1

This is called the normalization condition. A wave function satisfying the above 
condition is said to be normalized.

Requirement of an Acceptable Wave Function
Besides being normalizable, an acceptable wave function must fulfil the following 
requirements:
 1. y must be finite everywhere. If, for instance Y is infinite, it would mean an 

infinitely large probability of finding the particle at that point. This would 
violate the uncertainty principle \ y must have a finite or zero value at any 
point.

 2. y must be single valued. If y has more than one value at any point, it would 
mean more than one value of probability of finding the particle at that point 
which is obviously ridiculous.

 3. It must be continuous and have a continuous first derivative everywhere. This 
is necessary from Schrödinger equation itself which shows that d2y/ dx2 must  
be finite everywhere. This can be so only if d Y/dx has no discontinuity at 
any boundary. Furthermore, the existence of d y/dx as a continuous function 
implies y too is continuous across the boundary.

These requirements which must be fulfilled by an acceptable wave function carry 
great significance when the Schrödinger’s steady state equation for a given system 
is solved to obtain a wave function which fulfils these requirements, then we find 
that the equation can be solved only for the value of energy of the system. Thus, 
energy quantization appears in wave mechanics as a natural feature of the solution 
of the wave function. The values of energy for which Schrödinger equation 
can be solved are called eigenvalues and the corresponding (acceptable) wave 
functions are called eigenfunctions.

2.9 HEISENBERG’S UNCERTAINTY PRINCIPLE
A monochromatic wave is infinite in extent so instead of associating a single mono-
chromatic de Broglie wave with a moving particle, we associate a wave packet 
consisting of a group of waves of nearly equal amplitude centred around de Broglie 
l = h/p of the particle. The wave packet has the dimensions of the localized particle 
and travels with the same velocity as the particle.

The association of a group of waves with a moving particle that the position of 
the particle at any instant of time cannot be specified with any desired degree of 
accuracy. The particle can be somewhere within the group of waves, i.e., within a 
small region Dx of space (Dx is linear spread of the wave packet) Fig. 2.7.

The probability of finding the particle is maximum at the centre of the wave packet 
and falls to zero at its ends. Therefore, there is an uncertainty Dx  in the position 
of the particle. A wave packet is formed by waves having a range of wavelength. 
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2.10 ELECTRON DIFFRACTION EXPERIMENT
Let us consider a stream of electrons moving along x direction passes through a 
narrow slit of width d (= Dy). If Dy is comparable to the wavelength of the electron 
beam, then the electrons are diffracted. According to single slit diffraction pattern 
a central maxima and two secondary minima are formed as shown in Fig. 2.4. Ac-
cording to diffraction theory,
  d sin q = l

Fig. 2.8 Electron diffraction experiment.

or Dy = l
sin q

  (1)

Q d = Dy =  uncertainty in position of electron before being 
diffracted.

Before diffraction a slit electron has momentum px only along x direction and 
zero in y direction. Therefore, uncertainty in y component of momentum of Dpy = 0. 
Because of the diffraction effect at the slit, the particle acquires a small component 
of momentum py in y direction. The original momentum of the particle in the X 
direction px decreases so that the resultant momentum p remains constant. The 
original momentum of the particle in the y direction was accurately known to be zero. 
Therefore, Dpy is the uncertainty introduced in the y component of the momentum.

\ Dpy is the uncertainty produced in y component of momentum.
Particles that strike the screen at a point A, the first minima must have left the 

slit at an angle q, given by
 tan q = q = 

Dp
p
y

x
 (2)

Equating (1) and (2)

 
Dp
p
y

x
 = l

Dy

\ Dy . Dpy = l. px

\ Dy . Dpy = h  Q l = 
h
px

which is the uncertainty principle, i.e., if we try to improve the accuracy in y, we 
have to reduce to Dy using a finer slit which results in turn in a wider pattern. It 
leads to a larger Dpy.
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2.11 g-RAY MICROSCOPE EXPERIMENT
Consider an experiment for measurement of the position of an electron at rest using 
microscope. Since the size of electron is very small, light wave cannot be used for 
measurement as it would be 104 to 105 times smaller than the size of electrons. To 
illuminate an electron g rays can be used. To determine the location of the electron, 
one photon must bounce off the electron, and pass through the microscope into 
our eyes. A g-photon carries a very large momentum. When the photon strikes the 
electron, part of the momentum and energy are transferred to the electron due to 
the Compton scattering. Thus, when the scattered photon is registered by the micro-
scope, only the earlier position of the electron can be deduced but the momentum 
of the electron is altered.

Electron

Incident
photon

Before
collision

Scattered
photon

After
collision

Recoiling
electron

(a) (b)

Fig. 2.9  An experiment where an attempt is made to locate electron by illuminating it 
with g-rays. The g-rays cause recoil of electron thus frustrating our efforts to 
know the electron position.

Let the incoming photon momentum be h/l. The uncertainty in the electron 
momentum after the scattering be Dp. This Dp can have maximum values as the 
momentum of incident photon, i.e., h/l

\ Dp = h
l

The position of the electron can be determined within one wavelength of photon. 
The uncertainty in position is Dx = l.

\ Dx .Dp = l . h
l

 = h

which is the uncertainty principle.

2.12 APPLICATIONS OF UNCERTAINTY PRINCIPLE

(i) Non-existence of electrons and existence of protons and neutrons in the 
nucleus: The radius of nucleus of any atom is of the order of 10–14 m. If an electron 
is confined inside the nucleus, then the uncertainty in the position Dx of the electron 
is equal to the diameter of the nucleus, i.e., Dx = 2 ¥ 10–14 m.

Chapter_2.indd   57 11/4/2017   10:58:00 AM



Quantum Mechanics 59

(ii) Binding energy of an electron in atom: In an atom, the electron is under the 
influence of electrostatic potential of positively charged nucleus. It is confined to 
the linear dimensions equal to the diameter of electronic orbit. The uncertainty in 
the position Dx of an electron is of the order of 2R where R is the radius of the orbit 
and the corresponding uncertainty in the momentum component Dpx is given by

 Dpx > h
x2p .D

 Dpx > h
R2 2p .

which shows the momentum of electron in an orbit is at least

 p ~ Dpx ~ h
R2 2p . , R ª 10–10 m
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m

h
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Taking R = 10–10 m, we have E = (1 – 15z)eV
Now, the binding energies of the outermost electrons in H and He are – 13.6 eV 
and – 24.6 eV respectively. So, the value of binding energy derived on the basis of 
uncertainty principle is acceptable as these are comparable in magnitudes. 

(iii) Finite width of spectral lines: From Heisenberg’s principle of energy and 
time relation, we have
  DE . Dt > ħ
Since the lifetime of electron in an excited orbit is finite (10–8 sec), so the energy 

levels of an atom given by DE = �
Dt

 must have a finite width which means that 

the excited levels must have a finite energy spread, i.e., radiation given out when 
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an electron jumps must be truly monochromatic, i.e., the spectral lines can never 
be sharp but must have a natural spectral width.

(iv) Strength of nuclear force: If we assume the nuclear radius is of the order 
r0 = 1.2 ¥ 10–13 cm.

From uncertainty principle, momentum will be of the order p = �
r0\ K.E. will be of the order

   K.E. = p
m mr

2

0
22 2

= �  = 10 MeV

where M corresponds to the mass of a nucleus (photon or neutron). Since the nucleus 
is bound, so that B.E. should be greater than K.E. with –ve sign so the B.E. of a 
nucleus is of the order of 10 MeV.

2.13  ONE-DIMENSIONAL TIME-DEPENDENT 
SCHRÖDINGER EQUATION

In 1926, Erwin Schrödinger formulated the wave equation for matter waves which 
is known as Schrödinger’s equation. It plays the same role in quantum mechanics as 
Newton’s second law does in classical mechanics. The motion of an atomic particle 
can be determined using Schrödinger’s wave equation.

Let us consider a microparticle. Let y be the wave function associated with the 
motion of this microparticle y function represents the wavefield of the particle. It 
is smaller than E & B used to describe the electromagnetic waves and to transverse 
displacement for waves on a string.
For one-dimensional case, the classical wave equation has the following form

  
∂
∂

∂
∂

2

2

2

2
x x
x v t

= 1
2  (1)

A solution of the above equation is the familiar plane wave
  x( ) ( )x t Aei kx t

1 = -w  (2)
where w = vk and v is phase velocity.
For microparticle, w and k may be replaced with E & P using Einstein & de 
Broglie relations.

&
 

w = E

k

h

=

¸

˝
ÔÔ

˛
Ô
Ô

2p
l

 
w = = =

= = =

2 2

2 2

p p

p
l

p

v E
h

E

k P
h

P
�

�

 (3)

Substituting equation (3) in (2) & replacing x (x, t) with wave function y (x, t)
  y (x, t) = Ae–i(Et – px)/ħ (4)

Differentiating with respect to t

  ∂
∂

= -y y
t

i E
�

 (5)
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The right-hand side of equation (10) is a function of t only and the left-hand 
side a function of x only. Therefore, equation (10) must be valid for any x and t, it 
can be so only if the two sides of equation (10) are equal to a constant. Setting this 
constant equal to energy E, we get

  - ∂
∂

+ =�2 2

22
1

m x
x

x
V x E

y
y( )

( )
( )

\  - ∂
∂

+ =�2 2

22m x
V Ey y y  (12)

This is time independent Schrödinger equation.
In three dimensions, the time independent Schrödinger equation, is written as

  - + =�2
2

2m
V r E— y y y( )  (13)

where,   —2
2

2

2

2

2

2= ∂
∂

+ ∂
∂

+ ∂
∂x y z

Equation (12) is frequently written in the form Hy = Ey.
where H is Hamiltonian operator

 H = - +�2
2

2m
V—  (14)

2.15 MOTION OF A FREE PARTICLE

Consider an electron moving freely in space along the positive x direction and not 
acted upon by any force. Since no force is acting on the electron and its potential 
energy is zero.

Schrödinger’s time independent equation is,

  - +�2 2

22m
d
dx

V Ey y = y  (1)

  d
dx

m
h

2

2

2

2
8y + p  Ey = 0 (2)

Q ħ = h
2p

 & V = 0

 If K2 = 8 2

2
p mE
h

 (3)

the above equation reduces to

  d
dx

K
2

2
2 0y y+ =  (4)
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The general solution to the above equation is
 y(x)  = AeiKx + Be–iKx (5)
where A and B are constants. As it is assumed that the waves propagating only in 
the positive x direction, we can write
 y (x, t)  = AeiKx e–iwt

Since the electron is moving freely, there are no boundary conditions and hence 
no restriction on K. All values of the energy are allowed. The allowed values of 
energy form a continuum and are given by

 E = h
m
K

2

2
2

8p
A freely moving electron therefore possesses a continuous energy spectrum as 

shown in Fig. 2.10.

 K = 2 2
2
mE P
� �

= = p
l

The K vector describes the wave properties of the electrons.
As E a K 2 the graph between E & K is a parabola as shown in Fig. 2.10. The mo-

mentum is well defined in this case. Therefore, according to the uncertainty  principle, it 
is difficult to assign a position to the electron, i.e., the electron position is indeterminate.

K K

E

Fig. 2.10 Parabolic relationship between E & K in case of free electron.

2.16  PARTICLE TRAPPED IN ONE-DIMENSIONAL 
INFINITE POTENTIAL WELL

Consider the motions of electrons in one-dimensional deep potential well bounded 
by high potential barriers. Electrons can propagate along X-axis and can get reflected 
from the walls at x = 0 and x = L as shown in Fig. 2.11 and thus it can propagate 
both in positive and negative x directions within the well the potential energy is 
zero and at the boundaries, i.e., x = 0 and x = L, potential is very high almost •. 
Therefore, the probability of finding the electron outside the well must be zero, 
i.e., y = 0 at x < 0 and x > L.

The Schrödinger equation is

  — y + 8 y
2

2
2 0p m
h

E V( )- =
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\  L n
K

= p  (8)

This equation (6) implies that the wave equation has solutions only when the 
electron wavelength is restricted to discrete values such that only a whole number 
of half wavelength  formed over the length L, i.e., the electron form standing wave 
pattern within the potential well.

Substitute (7) in (2)

 K2 = n
L

mE
h

2 2

2

2

2
8p p=

\ En = h
ml

n
2

2
2

8
.  (n = 1, 2, 3,….) (9)

The above equation shows only those values of energy are which are possible 
for n to be an integer.
So E1 = h

mL
E h

mL
E h

mL

2

2 2

2

2 3

2

28 2
9

8
, ,= =  ... etc.

are allowed energy states. It is shown in Fig. 2.12.
Energy of particle in a box can take only discrete values, i.e., it is quantized. 

The value of energy E1 for n = 1 is called zero point energy, which signifies that 
there must be some movement of particles (atoms, molecules, etc.) at the absolute 
zero temperature.

n = 4

n = 3

n = 2

n = 1

E4 =
2h2

mL2

E3 =
9h2

8mL2

E2 =
h2

2mL2

E1 =
h2

8mL2

Fig. 2.12   Energy level diagram for an electron confined to a one-dimensional 
potential well. Note that the electron cannot have zero energy. The lowest 
allowed energy is E1.

The wave functions corresponding to the above allowed discrete energy levels 
can be obtained as follows:
 y = 2Ai sin Kx

Applying normalized condition.

   | | , | | siny( )x dx iA Kxdx
L L

2

0

2 2

0

1 2 1= =Ú Úwe get
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   sin cos2 1 2
2

Kx Kx= -

   | | cos2 1
2

2
2

12

0

iA Kx dx
L

Ú -Ê
ËÁ

ˆ
¯̃

=

\   | | sin2 2
2

1
2

2

0 0
iA Kx x

L L-Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

   | | sin2 2
2

0
2

12iA KL L- -Ê
ËÁ

ˆ
¯̃

+
Ï
Ì
Ó

¸
˝
˛

=

   | | sin2
2 2

12iA n L K n
L

- +Ï
Ì
Ó

¸
˝
˛

= =p p
∵

   | |2
2

12iA LÊ
ËÁ

ˆ
¯̃

=

   | |2 2iA
L

=

Inserting the value of |2iA| into equation, we get

 y(x) = 2
L

n
L
xsin p

 |y(x)|2 = 2 2

L
n
L
xsin p

Analysis of the above result shows
 1. While yn may be negative, |yn|

2 is always positive |yn|
2 gives the probability 

of finding the electron at certain place within the well. Wave function  and 
|yn|

2 can be plotted as shown in Fig. 2.13. For n = 1, the probability of finding 
a particle is largest in the middle of the box for most of time.

Fig. 2.13  The allowed wave functions and the corresponding probability distributions 
for an electron trapped in a one-dimensional potential well.
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 5. Uncertainty principle,
  Dx . Dp ≥ ħ
  DE . Dt ≥ ħ
  DL . Dq ≥ ħ

 6. En = 
n h
ma

2 2

28

 7. y(x) = 2
a

n x
a

sin p

QUESTIONS WITH ANSWERS
 1. What are the assumptions of Planck’s quantum theory?
  The assumptions of Planck’s quantum theory are:
 ∑ Atoms in the black body are assumed to be simple harmonic oscillators.
 ∑ The harmonic oscillators do not emit energy continuously.
 ∑ Energy is emitted in the form of quanta of magnitude hv.
 2. State de Broglie’s hypothesis.
   According to de Broglie’s hypothesis, a particle moving with a velocity v 

and mass m has a wave associated with it. The wavelength of this wave is 
given by

  l = =h
m

h
pv

	 3.	 What	is	the	physical	significance	of	the	wave	function?
 ∑  The wave function y(x, y, z, t) signifies the probability of finding a 

particle in space at any given instant of time.
 ∑ It relates statistically the moving particle and its matter wave.
 ∑ It is a complex quantity.
 ∑ |y (x, y, z)|2 gives the probability density of the particle, which is a real 

quantity.
 4. Which experiments were carried out to verify uncertainty principle?
  Electron diffraction experiment and g-ray microscope experiment were used 

to verify uncertainty principle.
 5. What is a wave function?
  A variable quantity which characterizes de Broglie wave is known as wave 

function and is denoted by the symbol y.
	 6.	 Mention	physical	significance	of	the	wave	function.
 ∑ It relates the particle and wave nature of matter statistically.
 ∑ It is a complex quantity and hence cannot be measured.
 ∑ It must be well behaved. That is, single valued and continuous every-

where.
 ∑ If the particle is certainly to be found somewhere in space, then the 

probability value is equal to one.
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  i.e., P = | |y 2

v

 = 1ÚÚÚ dx dy dz

  A wave function satisfying the above relation is called a normalized 
wave function.

 7. Write the Schrödinger time independent and dependent wave equation 
and explain the terms.

 ∑ Schrödinger’s time independent wave equation is

  — y y2 2 0+ 2
m VE
�

( )- =

 ∑ Schrödinger’s time dependent wave equation is 

  -�
�

2
2

2m
V i— y y y+ = ∂

∂t

where y is the wave function and Y is a function of Cartesian coordinates.
 8. What are Hamiltonian and energy operators?
   The Schrödinger time independent wave equation is 

  -�
�

2
2

2m
V i— y y y+ = ∂

∂t
  The above equation can be written as

  
-Ê

ËÁ
ˆ

¯̃
�

�
2

2

2m
V i— y y+ = ∂

∂t

 or Hy = Ey

  where H 
-Ê

ËÁ
ˆ

¯̃
�2

2

2m
V— +  is called the Hamiltonian operator

  and E i
t

= � ∂
∂

 is called the energy operator.

 9. What is zero point energy?
   The possible energies of a particle in a box of length a is given by

  E n h=
2 2

8 2ma
 [where n = 1, 2, 3, ….]

 If n = 1 then E = h
ma

2

28
  This is the energy of the ground state of the particle. Since the particle in a 

box cannot be at rest, its minimum energy is positive and is often called the 
zero point energy.

 10. What are eigenvalues and eigenfunctions?
   The allowed values of energy for different values of n are given by
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   E = h
m

2

22 l

 = 
( . )

. ( )
6 63 10

1 674 10 10

34 2

27 10 2
¥

¥ ¥

-

- -

 = 2.6 ¥ 10 –20 Joules

 = 
2 6 10
1 6 10

20

19
.
.

¥
¥

-

- eV

 E = 0.164 eV
 2. Compute de Broglie wavelength of 1011 KeV neutrons (mn = 1.675 ¥ 10–27 kg).
Solution: Given data: E = 1011 KeV =  1011 ¥ 103 eV
 E = 1.6 ¥ 10–19 ¥ 1014 J = 1.6 ¥ 10–5 J

 Formula: l = 
h
mE2

 l = 
6 625 10

2 1 675 10 1 6 10

34

27 5

.

. .

¥

¥ ¥ ¥ ¥

-

- -

 = 2.86 ¥ 10–18 m
 3. An electron microscope uses 1.25 Ke V electrons. Find its ultimate resolving 

power on the assumption that this is equal to the wavelength of the electron, 
given that

 e = 4.8 ¥ 10–10 e.s.u., m = 9.0 ¥ 10–28 gm
 h = 6.65 ¥ 10–27 erg-sec.
Solution: Given data: E = 1.25 KeV = 1.25 × 103 eV = 1.25 ¥ 103 ¥ 1.6 ¥ 10–19 J
  m = 9.0 ¥ 10–28 gm
  h = 6.63 ¥ 10–34 J sec.

  Formula: l = h
mE2

 l = 6 63 10

2 9 1 10 1 25 10 1 6 10

34

31 3 19

.

. . .

¥

¥ ¥ ¥ ¥ ¥ ¥

-

- -

 = 3.475 ¥10–11 m
 = 0.348 A.U.
 So, the resolving power of microscope is 0.348 Å.
 4. What is de Broglie wavelength of an electron which has been accelerated 

from rest through a potential difference of 100 V? 
Solution: Given data: V = 100 V.
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  Formula: l =  12 26.
V

Å

   = 12 26
100
.

   = 1.226 Å
 5. Estimate the amount of accelerating voltage to which electrons are to be 

subjected in order to associate them with de Broglie wavelength of 0.50 Å. 
Given that m = 9.0 ¥ 10–28 gm

Solution: Given data: l = 0.50 Å = .5 ¥ 10–8 cm
  m = 9.0 ¥ 10–28 gm
  h = 6.62 ¥ 10–34 J. sec.

  Formula: y = 12 26. .
V

A.U

 \  V =  ( . )12 26 2

2l

   = ( . )
( . )
12 26

0 5

2

2

   = 601.2 volts
 6. Calculate de Broglie wavelength associated with a proton moving with a 

velocity equal to 1
20 th of the velocity of light.

Solution: Given data: vp = 1
20

¥ 3 ¥ 108 = 1.5 × 107 m/sec

 mp = 1.67 ¥ 10–27 kg

  Formula: l = h
mv

 = 6 62 10
1 67 10 1 5 10

34

27 7
.

. .
¥

¥ ¥ ¥

-

-

 = 2.64 ¥ 10–14 m.
 7. Compute the de Broglie wavelength of a proton whose kinetic energy is 

equal to the rest energy of an electron. Mass of a proton is 1836 times that 
of electron.

Solution: Given data: mp = 1836 ¥ me
 = 1836 ¥ 9.1 ¥ 10–31 kg
 E = m0c

2

 = 9.1 ¥ 10–31 ¥ (3 ¥ 108)2

 = 8.19 × 10–14 J
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  \ p = h
l

= ¥ -

-
6 62 10

10

34

10
.

   E = 6 62 10
10

3 10
34

10
8. ¥ -

- ¥ ¥ J

   = 6 62
10 1 6 10

10 3 1034 8

10 19
.

.
¥ ¥ ¥-

- -¥ ¥
eV

   = 1.24 × 104 eV
 11. Calculate the de Broglie wavelength of an a particle accelerated through 

200 V.
  ma = 6.576 ¥ 10–21 kg.
Solution: Given data: ma = 6.576 ¥ 1021 kg
 V = 200 V
 ea = 2 ¥ e
 Formula: E = eV

 l = h
m E2 a a

 l = h
m e V2

6 62 10

2 6 576 10 2 1 6 10 200

34

21 19
a a

= ¥

¥ ¥ ¥ ¥ ¥ ¥

-

- -

.

. .

 = 7.216 ¥ 10–16 m
 12. A beam of 10 kV electrons is passed through a thin metallic sheet whose 

interplanar spacing is 0.55 Å. Calculate the angle of deviation of the first 
order diffraction maximum.

Solution: Given data: V = 10 kV = 10 ¥ 103 V
 d = 0.55 Å = 0.55 ¥ 10–10 m
 n = 1
  Formula:

 l = 
12 26.

V
 Å and 2d sin q = nl

 l = 
12 26

10 103

.

¥

 = 0.1226 Å

 q = sin–1 n
d
l

2
1 0 1226 10

2 0 55 10
1

10

10
Ê
ËÁ

ˆ
¯̃

= ¥ ¥
¥ ¥

Ê

ËÁ
ˆ

¯̃
-

-

-sin .
.

 = sin–1 (0.11145) = 6.399°
 13. An electron and a 150 gm baseball are travelling at 220 m/s measured to an 

accuracy of 0.065%. Calculate and compare uncertainty in position of each 
of the bodies.

Solution: Given data; ve = 220 m/s,
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  accuracy = 0.065%
 m = 150 gm = 0.15 kg
 vm = 220 m/s

 ve = 220 ¥ 0 065
100
.  = .143 m/s

  Formula: Dx = �
m v

h
m vD D

=
2p

 (i) Dve = ve ¥ 0.065% = 220 ¥ 0 065
100
.  = 0.143 m/s

  Dxe = 6 63 10
2 3 14 9 1 10 0 143

34

31
.

( . . ) ( . )
¥

¥ ¥ ¥

-

-  = 0.811 ¥ 10–3 m

 (ii) Dvm = 0.143 m/s

  Dxm = 
�

m VmD
= ¥

¥ ¥ ¥

-6 63 10
2 3 14 0 15 0 143

34.
. . .

 = 4.92 ¥ 10–33 m

  The results show that the uncertainty in position of the electron is very 
large compared to its dimensions (= 10–15 m) whereas the uncertainty in 
position of the baseball is nearly as small as zero.

 14. An electron has a speed of 500 m/s correct up to 0.01% with what minimum 
accuracy can you locate the position of this electron.

Solution: Given data: ve = 500 m/s
   Dve = accuracy = 0.01% = 500 ¥ 0 01

100
.  = 0.05 m/s

   Dx = ?
  Formula: Dp = mDv
    = m . Dv
    = 9.1 ¥ 10–31 ¥ 0.05

    = 4.55 ¥ 10–32 kg m/s
  The uncertainty in position is given by

   Dx = h
p2

6 63 10
2 3 14 4 55 10

34

32pD
= ¥

¥ ¥ ¥

-

-
.

. .

    = 2.320 mm
 15. An electron has a speed of 600 m/s with an accuracy of 0.005%. Calculate 

the uncertainty with which we can locate the position of the electron.
Solution: Given data: ħ = 6.6 ¥ 10–34 J
   m = 9.1 ¥ 10–31 kg
   v = 600 m/s

   Dv = 600 ¥ 0 005
100
.  = 0.03 m/s
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 19. In jumping from an excited state to a stationary state, an atom takes 10–8 sec. 
What is the uncertainty in the energy of the emitted radiation?

Solution: Given data: Dt = 10–8 sec

  Formula: DE . Dt = h
2p

  The excited atom gives up its excess energy by emitting one or more photons 
of characteristic frequency. The average time gap between the excitation of 
an atom and the time it radiates energy is 10–8 sec. So, the photon energy is 
uncertain by an amount given by

   DE = h
t2

6 63 10
10 2

1 055 10
10

34

8

34

8p pD
= ¥

¥
= ¥-

-

-

-
. .

    = 1.055 ¥ 10–26 J
  and the frequency of the light is uncertain by an amount.

   Dv = DE
h

= ¥1 6 107. Hz and this limit cannot be reduced.

 20. Using uncertainty relation, calculate the time required for the atomic system 
to retain rotation energy for a line of wavelength 6000 Å and width 10–4 Å.

Solution: Given data: dl = 10–4 Å = 10–14 m
   l = 6000 Å = 6 ¥ 10–7 m

  Formula: E = hc
l

  \ DE = hc
l2  Dl and DE . Dt = h

2p

  \ Dt = h
E2
1

p
¥

D

    = �
�2 2

2 2

p
l

l
l

p l
¥ =

c cD D.

    = ( )
.

6 10
2 3 14 3 10 10

7 2

8 11
¥

¥ ¥ ¥ ¥

-

-

    = 1.9 ¥ 10–11 sec.
 21. If the uncertainty in the location of a particle is equal to its de Broglie wave-

length, what is the uncertainty with velocity?
Solution: Given data: Dx = l
  Formula Dx Dp = h
   Dx . mDv = h

   Dv = h
m

h
m h mv

v
l

=
¥

=
/

  \ Dv = v
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 22. A nucleon is confined to a nucleus of diameter 5 ¥ 10–4 m. Calculate the 
minimum uncertainty in the momentum of the nucleon. Also calculate the 
minimum kinetic energy of the nucleon.

Solution: Given data: (Dx)max = 5 ¥ 10–4 m
  Formula:  (Dp)min (Dx)max = h

   (Dp)min = �
( )

.

maxDx
= ¥

¥

-

-
1 055 10

5 10

34

4

    = 2.11 ¥ 10–31 kgm sec.
  Now p cannot be less than (DP)min
   pmin = (DP)min

  \ E = P
m
1
2 31 2

272
2 11 10

2 1 67 10
= ¥

¥ ¥

-

-
( . )

.
J

    = 1 332 10
1 6 10

35

19
.
.

¥
¥

-

- eV

    = 8.33 ¥10–17

 23. Find the energy of an electron moving in one dimension in an infinitely high 
potential box of width 1 Å, given mass of the electron 9.11 ¥ 10–31 kg m and 
h = 6.63 ¥ 10–34 Js.

Solution: Given data: a = 1 Å = 10–10 m 
   m = 9.11 ¥ 10–31 kg
   h = 6.63 ¥ 10–34 Js

  Formula: E = 
h
ma

2

28

  ` E = ( . )
. ( )

6 63 10
8 9 11 10 10

34 2

31 10 2
¥

¥ ¥ ¥

-

- - J

    =  9.1 ¥ 10–19 J

    = 9 1 10
1 602 10

19

19
.

.
¥
¥

-

- eV

    = 5.68 eV
 24. An electron is bound by a potential which closely approaches an infinite 

square well of width 2.5 ¥ 10–10 m. Calculate the lowest three permissible 
quantum energies the electron can have.

Solution: Given data: a = 2.5 ¥ 10–10 m

  Formula: En = 
n h
ma

2 2

28
 

   E1 = ( . )
. ( . )

6 63 10
8 9 1 10 2 5 10

34

31 10 2
¥

¥ ¥ ¥ ¥

-

- - = 9.63 ¥ 10–19 J

Chapter_2.indd   78 10/4/2017   4:29:51 PM



80 Applied Physics

  \ E = ( . )
( . ) ( )

6 6 10
2 1 6 10 3 10

34 2

27 10 2
¥

¥ ¥ ¥

-

- -

    = 1.45 ¥ 10–21 joule
  Further, 2 d sin q = n l

  or sin q = n
d
l

2
1 3 10

2 3 039 10
0 4936

10

10= ¥ ¥
¥ ¥

=
-

-
( )

( . )
.

   q = sin–1 (0.4936) = 29° 33¢
 27. A hydrogen atom is 0.53 Å in radius. Use uncertainty principle to estimate 

the minimum energy an electron can have in this atom.
Solution: Given ∆xmax = 0.53 Å
Heisenberg’s uncertainty principle

  D Dx p h=
2p

  (D (Dx p) )max min =
2
h
p

 (i)

  and (K.E.)min = p p
m

2 2

2 2
min min( )
m

= D  [ ]∵ p pmin min= D

 ( ) .
. .

D
D

p h
xmin = = ¥

¥ ¥

-

-2
1 6 63 10

2 3 14
1

0 53 10

34

10p
  = 1.9919 ¥ 10–24

  = 19.919 ¥ 10–25 kg m/sec

  and (K.E.)min = ( ) ( . )
.

minDp
m

2 24 2

312
19 919 10
2 9 1 10

= ¥
¥ ¥

-

-

  = 2.18 ¥ 10–18 J
 28. The speed of an electron is measured to be 5.0 ¥ 103 m/sec to an accuracy of 

0.003%. Find the uncertainty in determining the position of this electron.
Solution: Given v = 5.0 ¥ 103 m/sec
Formula used is

  D Dx p h=
2p

 Dv v= ¥ = ¥ ¥ =0 003
100

5 0 10 0 003
100

0 153. . . . /secm

  and Dp = mDv = 9.1 ¥ 10–31 ¥ 0.15 = 1.365 ¥ 10–31 kg m/sec

 D
D

x
p

= ¥
¥ ¥

= ¥
¥ ¥ ¥

- -

-
6 63 10

2 3 14
6 63 10

2 3 14 1 365 10

34 34

31
.

.
.

. .

 = 7.734 ¥ 10–4 m
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 29.  An electron has speed of 6.6 ¥ 104 m/sec with an accuracy of 0.01%. Cal-
culate the uncertainty in position of an electron. Given mass of an electron 
as 9.1 ¥ 10-31 kg and Planck’s constant h as 6.6 ¥ 10-34 J sec.

Solution: Given v = 6.6 ¥ 104 m/sec and Dv = ¥ ¥6 6 10 0 01
100

4. .  m/sec

 = 6.6 m/sec.
Formula used is
  D D D

D
x p h x h

p
= =

2 2
1

p p
or

 Dp = mDv = 9.1 ¥ 10–31 ¥ 6.6

 D
D

x h
p

= = ¥
¥ ¥ ¥ ¥

-

-2
1 6 63 10

2 3 14 9 1 10 6 6

34

31p
.

. . .

  Dx = 1.758 ¥ 10–5 m
 30. If an excited state of hydrogen atom has a lifetime of 2.5 ¥ 10–14 sec, what 

is the minimum error with which the energy of this state can be measured? 
Given h = 6.63 ¥ 10-34 J sec.

Solution: Given ∆t = 2.5 ¥ 10-14 sec.
Formula used is

 D DE t = = h
2p

 D
D

E = h
2

J
p t

= ¥
¥ ¥ ¥

= ¥
-

-
-6 63 10

2 3 14 2 5 10
0 422 10

34

14
20.

. .
.

  DE = 4.22 ¥ 10–21J
 31. Find the energy of an electron moving in one dimension in an infinitely high 

potential box of width 1.0 Å. Given m = 9.1 ¥ 10–31 kg and h = 6.62 ¥ 10–34 
J sec.

Solution: Given l = 1.0 ¥ 10–10 m, m = 9.1 ¥ 10–31 kg and h = 6.62 ¥ 10–34 J sec. 
Formula used is
  = En

n h
mL

2 2

28

  = n2 34 2

31 10 2
6 63 10

8 9 1 10 1 0 10
( . )

. ( . )
¥

¥ ¥ ¥ ¥

-

- -

  = 0.602 ¥ 10–17 n2J
For n = 1,
 E1 = 6.04 ¥ 10–18J
and for n = 2,

Chapter_2.indd   81 10/4/2017   4:30:03 PM



Quantum Mechanics 83

 or   Dp  = D(mv) = h
x

h p
h

mv
2

1
2 2p p pD

= =

 mDv = mv
2p

 or   Dv = v
2p

 35. The position and momentum of 0.5 KeV electron are simultaneously 
determined. If its position is located within 0.2 nm, what is the percentage 
uncertainty in its momentum?

Solution: Given E = 0.5 ¥ 103 ¥ 1.6 ¥ 10–19 = 0.8 ¥ 10–16 J and ∆x = 0.2 ¥ 10–9 m.
Now
 DxDp = h

2p
and momentum  = 2  p mE

 so  p = 2 9 1 10 0 8 10 12 06 1031 16 24¥ ¥ ¥ ¥ = ¥- - -. . .

 or  p = 1.21 ¥ 10–23 kg m/sec

 or  Dp = h
x2

1 1
0 2 10 9p pD

=
¥ -

h
2 .

 Dp = 6 63 10
2 3 14 0 2 10

34

9
.
. .

¥
¥ ¥ ¥

-

-  = 5.279 ¥ 10–25 kg m/sec

∴ Percentage uncertainty in momentum

 Dp
p

¥100  = 5 279 10
1 21 10

100
25

23
.
.

¥
¥

¥
-

-

  = 5 279 10
1 21 10

4 36
23

23
.
.

. %¥
¥

=
-

-

EXERCISE
 1. Explain de Broglie’s concept of matter waves.
 2. Write an expression for the wavelength of a particle.
 3. What do you understand by a wave packet? What is the relationship between 

phase velocity and group velocity?
 4. Distinguish between phase velocity and group velocity. Show that the de 

Broglie wave group associated with a moving particle travels with the same 
velocity as that of the particle.

 5. Can a wave given by an equation y = A sin(wt – kx) represent a particle? 
Explain the concept of a wave packet? How does this concept lead to Heisen-
berg’s uncertainty principle.
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 5. Compute the energy difference between the ground state and the first excited 
state for an electron in a one-dimensional rigid box of length 10–8 cm. Given 
m = 9.1 ¥ 10–31 kg and h = 6.626 ¥ 10–34 J sec.

[Ans: 114 eV]
 6. Calculate the value of lowest energy of an electron in one dimensional force 

free region of length 4 Å.
[Ans: 3.78 ¥ 10–19 J]

 7. The lowest energy possible for a certain particle entrapped in a box is 40 eV. 
What are the next three higher energies the particle can have?

[Ans: 160 eV, 360 eV and 640 eV]
 8. Find the energy levels of an electron in a box 1 nm wide. Mass of electron 

is 9.1 ¥ 10–31 kg. Also find the energy levels of 10 gm marble in a box 10 cm 
wide.

  [Ans: 6.02 ¥ 10–20 J, 24.08 ¥ 10–20 J and 54.18 ¥ 10–20 J; 
and for marble 5.49 ¥ 10–64 J, 21.96 ¥ 10–64 J and 49.41 ¥ 10–64 J]

Chapter_2.indd   85 11/4/2017   10:58:23 AM


