About the Book
Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors’ 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M).

What’s New in This Edition:
This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems.

Containing 13 chapters, this third edition:
Describes sensor dynamics, signal conditioning, and data display and storage
Focuses on means of conditioning the analog outputs of various sensors
Considers noise and coherent interference in measurements in depth
Covers the traditional topics of DC null methods of measurement and AC null measurements
Examines Wheatstone and Kelvin bridges and potentiometers
Explores the major AC bridges used to measure inductance, Q, capacitance, and D
Presents a survey of sensor mechanisms
Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect
Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers
Contains the classic means of measuring electrical quantities
Examines digital interfaces in measurement systems
Defines digital signal conditioning in instrumentation
Addresses solid-state chemical microsensors and wireless instrumentation
Introduces mechanical microsensors (MEMS and NEMS)
Details examples of the design of measurement systems

Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents.

Salient Features
Provides a firm knowledge base in modern areas such as sensor mechanisms, data compression, and specialized opto-electronic sensor systems
Expands its scope to encompass geophysical, chemical, and photonic measurement
Describes low-noise system designs and covers digital signal processing and interfaces
Includes clear examples along with challenging, classroom-tested problems
Contains a robust chapter on noise and interference and how they affect measurement accuracy

Table of Contents
Measurement Systems
Analog Signal Conditioning in Instrumentation
Noise and Coherent Interference in Measurements
DC Null Methods of Measurement
AC Null Measurements
Survey of Sensor Mechanisms
Applications of Sensors to Physical Measurements
Basic Electrical Measurements
Digital Interfaces in Measurement Systems
Introduction to Digital Signal Conditioning in Instrumentation
Introduction to Mechanical Microsensors
Examples of the Design of Measurement Systems

About the Author

Robert B. Northrop