PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink

Liuping Wang, Shan Chai & Dae Yoo & Lu Gan and Ki Ng


About the Book

A timely introduction to current research on PID and predictive control by one of the leading authors on the subject

PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents.

Salient Features

Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels
Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms
MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications.
Includes MATLAB and Simulink software using xPC Target for teaching purposes
A companion website is available
Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.

Table of Contents

1 Modeling of AC Drives and Power Converter
2 Control of Semiconductor Switches via PWM Technologies
3 PID Control System Design for Electrical Drives and Power Converters
4 PID Control System Implementation
5 Tuning PID Control Systems with Experimental Validations
6 FCS Predictive Control in d – q Reference Frame
7 FCS Predictive Control in Reference Frame
8 Discrete-time Model Predictive Control (DMPC) of Electrical Drives and Power Converter
9 Continuous-time Model Predictive Control (CMPC) of Electrical Drives and Power Converter
10 MATLAB®/Simulink® Tutorials on Physical Modeling and Test-bed Setup

About the Author

Liuping Wang: is Professor of Control Engineering at RMIT University, Melbourne, Australia. She has been working on PID control systems and system identification for over 20 years and, together with her research group, Professor Wang has generated the research outcomes that have significantly improved the performance of computer numerical control (CNC) machines, leading to a new understanding of electric motor control and regenerative power supplies. She has published numerous articles on the subject.
Shan Chai, Dae Yoo, Lu Gan and Ki Ng - are PhD students working under the supervision of Professor Wang and are part of the research team that has produced, and is producing, new approaches and new understanding of the electrical motor control and the control of regenerative power supplies.