About the Book

This book contains selected overviews on several important aspects of photosynthesis and provides both tutorial content and critical insight into the future of photosynthesis research. Photosynthesis is a complex and challenging scientific topic since it deals with the process by which a wide range of organisms from bacteria to higher plants convert solar energy to chemical energy for producing food, fibre, and fuel out of small molecules of carbon dioxide and water. Deeper and greater understanding of this process holds a promise for a more sustainable Earth with an enjoyable pollution-free environment with new technologies for food and cleaner energy for a peaceful and progressive society. Thus, there have been global efforts to mimic the photosynthetic process to meet the needs of the future world.

This book having 19 chapters, gives glimpses of recent progress and future projections on photosynthesis, a process that feeds all living organisms and sustains the globe honors Professor Govindjee, Emeritus Professor of Biophysics Biochemistry & Plant Biology at the University of Illinois, USA. He is an outstanding researcher & teacher of photosynthesis and a global leader for stimulating photosynthesis research throughout the world. This book is useful for researcher/faculty and students as reference/text for courses in plant biology, environmental biology, and agriculture.

Salient Features

- The 19 articles contributed by 64 eminent researchers and scientists from across the globe discusses various aspects of photosynthesis
- Each article provides tutorial content and deep insights for carrying out further research.
- The articles are appropriately illustrated with diagrams and pictures, and are profusely referenced.

Table of Contents

Dissecting Oxygenic Photosynthesis: The Evolution of the Z-Scheme for Thylakoid Reactions
Molecular Architecture of Photosynthetic apparatus
State Shifts in Photosynthetic Organisms: Tracking Traits and Techniques
Dissipation of Excess absorbed Energy by the Photosynthetic Apparatus of Cyanobacteria
The Functional Sites of Electron Transfer Co-factors in Photosystem II Studied by Pulsed EPR
Delayed Fluorescence in a Millisecond range A Probe for the Donor Side-induced Photoinhibition in Photosystem II
Redox-control of Leaf variegation and Chloroplast Biogenesis in Arabidopsis thaliana
Transcriptional Response to low Oxygen conditions in Synechocystis sp strain PCC 6803 includes induction of a Gene Cluster containing psb A and patC2
Mutants of Chlorophyllase Oxygenase
A Comprehensive Study of the Effects of Nitrite Anion on Photosynthetic Electron Transport Chain
Mitochondrial Oxidative Metabolism Optimize Photosynthetic carbon Assimilation through Redox and Rox linked metabolite shuttles
Changes in Chloroplasts during Senescence and Abiotic Stresses
Inactivation and Turnover of Photosynthetic Machinery Under heat Stress
Salinity Tolerance Strategies in mangroves: salt Shock Experiments for Assessing Stress triggered Effects during salt Stress and Post Stress recovery in a true Mangrove Bruguiera gymnorhiza
Metal Toxicity in Photosynthesis
Efect of Heavy metals on Photosynthetic Carbon Assimilation and Thermoluminiscence of Unicellular alga Chlorella pyrenoidosa
Photosynthetic regulation of Senescence in Green leaves: Involvement of Sugar signaling
About the Author

Shigeru Itoh: Shigeru Itoh is Professor Emeritus at the Center for Gene Research, Nagoya University, Japan; earlier, he was professor in Physics, in the Division of Materials Science, at Nagoya University. He has a 1974 Doctor of Science in Biochemistry from the University of Tokyo, Japan. Itoh has also held academic positions at University of Illinois at Urbana-Champaign, USA; National Institute for Basic Biology, Okazaki, Japan; Kyushu University, Japan; and University of Bristol, UK. He is an international authority in the area of Biophysics and Biochemistry of Photosynthesis; he works with photosynthetic bacteria, cyanobacteria, lichens, mosses, and higher plants.

K.N. Guruprasad: Kadur N. Guruprasad is Professor in the School of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India. He has a 1979 Ph.D. in Botany from Gujarat University, Ahmedabad, India. Guruprasad specializes in the area of Photobiology and has a vast experience of teaching and research in this area. He has been a Japan Society of Promotion of Science (JSPS) visiting scientist at Kobe University, Kobe, Japan and at the Department of Biophysics, Moscow University, Moscow, Russia. He is an authority in the area of impact of UV radiation on Plant Photomorphogenesis and Photosynthesis.

Prasanna Mohanty: Prasanna Mohanty was a Professor in the School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. He had a 1972 Ph.D. in Biology from the University of Illinois at Urbana-Champaign, USA. Mohanty had also held academic positions at the University of Western Ontario, Canada; National Institute for Basic Biology, Okazaki, Japan; and in India at the University of Hyderabad; University of Indore; Indian National Science Academy, New Delhi; and the Regional Plant Resource Center, Bhubaneswar, Odisha. He was an international authority on Bioenergetics and Photo-biochemistry of Oxygenic Photosynthesis; he had worked with cyanobacteria, algae and plants.